您现在的位置是: 首页 > 常见家电故障 常见家电故障

溴化锂空调机组的组成和工作原理_溴化锂空调机组的组成和工作原理图_1

ysladmin 2024-06-02 人已围观

简介溴化锂空调机组的组成和工作原理_溴化锂空调机组的组成和工作原理图       溴化锂空调机组的组成和工作原理是一个非常复杂和重要的话题,需要深入研究和思考。我将尽力为您提供相关的信息和

溴化锂空调机组的组成和工作原理_溴化锂空调机组的组成和工作原理图

       溴化锂空调机组的组成和工作原理是一个非常复杂和重要的话题,需要深入研究和思考。我将尽力为您提供相关的信息和建议。

1.溴化锂制冷机工作原理及优缺点

2.溴化锂吸收式制冷机工作原理

3.溴化理空调的工作原理

4.溴化锂吸收式制冷压缩机组中吸收器的结构和工作过程是怎样的?

5.蒸汽型双效三筒溴化锂吸收式制冷压缩机组的工作原理是怎样的?

6.溴化锂制冷原理

溴化锂空调机组的组成和工作原理_溴化锂空调机组的组成和工作原理图

溴化锂制冷机工作原理及优缺点

       溴化锂制冷机是用溴化锂水溶液为工质,其中水为制冷剂,溴化锂为吸收剂。溴化锂属盐类,为白色结晶,易溶于水和醇,无毒,化学性质稳定,不会变质。溴化锂水溶液中有空气存在时对钢铁有较强的腐蚀性。下面小编就为大家介绍溴化锂制冷机工作原理及优缺点。

       一、溴化锂制冷机工作原理

       溴化锂制冷机是利用不同温度下溴化锂水溶液对水蒸汽的吸收与释放来实现制冷的,这种循环要利用外来热源实现制冷,常用热源为蒸汽、热水、燃气、燃油等。由于溴化锂制冷机具有许多独特的优点,近年发展十分迅速,特别是在空调制冷方面占有显著的地位。那么溴化锂制冷机的应用是否有利于提高一次能源的利用率,是否节能,在何种情况下节能,冷热源是否选用吸收式制冷机,一直是人们争论的焦点。溴化锂制冷机在实际中的应用及其使用寿命的长短直接关系到实际工程的经济效益。

       溴化锂以热能为动力源,以水为制冷剂,以溴化锂溶液为吸收剂,制取冷源水,称为溴化锂制冷机。其热源主要有蒸汽、热水、燃气和燃油等,可分为直燃型、蒸汽型和热水型。蒸汽型机组主要用在有蒸汽可以利用的场合,如城市集中供热热网、热电冷联供系统、纺织、化工、冶金等行业;热水型机组,可利用65℃以上的热水,如地热、太阳能热能、工业领域工艺过程产生的余热热水制取冷水。直燃型机组可利用燃气为宾馆、医院、写字楼、机场等大型建筑物提供空气调节。由于是以热制冷,溴化锂制冷机还可以利用工业废余热,为工业提供工艺所需冷水或空调。

       溴化锂制冷机以其可利用低品味的热能、所需电功率小、制冷剂为水以及溴化锂溶液对环境不构成破坏等特点在中央空调领域独树一帜,为满足我国严重缺电时期的空调用冷需求而受到了政府、电力部门的鼓励。自八十年代末以来,我国的溴化锂空调生产商已超过100家,其产品的制造水平和产量仅次于日本而位居世界前列。

       二、溴化锂制冷机的优点

       1、以热能为动力,勿需耗用大量电能,而且对热能的要求不高。能利用各种低势热能和废气、废热,如高于20kPa(o.2kgf/cm2)(表压)饱和蒸汽,各种排气;高于75℃的热水以及地热、太阳能等,有利于热源的综合利用,因此运转费用低。若利用各种废气、废热来制冷,则几乎不需要花费运转费用,便能获得大量的冷源,具有很好的节电、节能效果,经济性高。

       2、整个制冷装置除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低,运行比较安静,特别适用于医院、旅馆、食堂、办公大楼、影剧院等场合。

       3、以溴化锂溶液为工质,制冷机又在真空状态下运行,无臭、无毒、无爆炸危险,安全可靠,被誉为无公害的制冷设备,有利于满足环境保护的要求。

       4、冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量无级调节,且低负荷调节时,热效率几乎不下降,性能稳定,能很好地适应变负荷的要求。

       5、对外界条件变化的适应性强。如标准外界条件为蒸汽压力5.88XlOSpa(6kgf/cm2)(表压),冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84)XlOSPa(2.0~8.okgf/emz)(表压),冷却水进口温度25~40℃。冷媒水出口温度5—15℃的宽阔范围内稳定运转。

       6、安装简便,对安装基础的要求低。因运行时振动极小,故无需特殊的机座。可安装在室内、室外、底层、楼层或屋顶。安装时只需作一般校平,接上气,水管道和电源便可。

       7、制造简单,操作、维修保养方便。机组中除屏蔽泵、真空泵和真空阀门等附属设备外,几乎都是热交换设备,制造比较容易。由于机组性能稳定,对外界条件变化的适应性强,因而操作比较简单。机组的维修保养工作,主要在于保持所需的气密性。

       三、溴化锂制冷机的缺点

       1、在有空气的情况下,溴化锂溶液对普通碳钢具有较强的腐蚀性。这不仅影响机组的寿命,并且影响机组的性能和正常运行。

       2、制冷机在真空下运行,空气容易漏人。实践证明,即使漏人微量的空气,也会重地损害机组的性能。为此,制冷机要求严格密封,这就给机组的制造和使用增添了困难。

       3、由于直接利用热能,机组的排热负荷较大,因为冷剂蒸汽的冷凝和吸收过程,均需冷却。此外,对冷却水的水质要求也比较高,在水质差的地方,使用时应进行专门的水质处理,否则将影响机组性能正常发挥。

溴化锂吸收式制冷机工作原理

       水在低压下相态的变化。根据查询相关资料显示,溴化锂机组是利用水在低压下相态的变化,吸收汽化潜热来达到制冷的目的。溴化锂是由碱金属锂和卤族元素两种元素组成,溴化锂机组包括溴化锂吸收式制冷机和溴化锂直燃型制冷机两大类。

溴化理空调的工作原理

       溴化锂吸收式制冷机的工作原理是:?真空状态下,溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于中央空调系统。 溴化锂制冷机利用水在高真空状态下沸点变低(只有4摄氏度)的特点来制冷(利用水沸腾的潜热)。

       在溴化锂吸收式制冷中,由于溴化锂水溶液本身沸点很高(1265℃),极难挥发,所以可认为溴化锂饱和溶液液面上的蒸汽为纯水蒸汽;在一定温度下,溴化锂水溶液液面上的水蒸气饱和分压力小于纯水的饱和分压力;而且浓度越高,液面上的水蒸气饱和分压力越小。所以在相同的温度条件下,溴化锂水溶液浓度越大,其吸收水分的能力就越强。

扩展资料

       优势

       溴化锂制冷机组属于一种绿色的制冷空调系统,符合环保要求,它直接利用燃气能源,制冷剂是水,吸收剂是溴化锂,不用氟利昂或其他替代品,不会污染大气层,基本没有二氧化硫污染,二氧化碳的排放也大大低于燃煤,有利城市的生态环境。

       该机组取消了电空调必不可少的“燃煤发电———输配电———电制冷”这些中间环节,具有高效、节能的特点。

       百度百科-溴化锂制冷机

       中国科学院-上海学者建议使用燃气空调

溴化锂吸收式制冷压缩机组中吸收器的结构和工作过程是怎样的?

       溴化锂吸收式制冷原理和蒸汽压缩制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、汽化吸收载冷剂的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是在利用“溴化锂-水”组成的二元溶液为工质对,完成制冷循环的。

       在溴化锂吸收式制冷机内循环的二元工质中,水是制冷剂区别于氟利昂~。水在真空状态下蒸发,具有较低的蒸发温度(6℃),从而吸收载冷剂热负荷,使之温度降低。溴化锂水溶液是吸收剂,在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。吸收与释放周而复始制冷循环不断。制冷过程中的热能为蒸汽,也可叫动力。

蒸汽型双效三筒溴化锂吸收式制冷压缩机组的工作原理是怎样的?

       溴化锂吸收式制冷压缩机组中的吸收器主要由管簇、喷淋装置、液囊和抽气装置等构成。管簇:是由许多管子排列布置而成的一种热交换器件。为了减少制冷剂蒸汽在管排中的阻力,应根据气流方向在管排中设置一些气道,正确的排列方式如图5-20所示。

       图5-20 吸收器管排列图

       喷淋装置:通常喷淋装置有淋板式和喷嘴式两种。而喷淋方式有多种,根据机组的制冷量不同,常用的喷淋方式有以下两种。

       一种是对于制冷量较少的机组,可将浓溶液与溶液泵出来的一部分稀溶液经引射器混合后进行喷淋。另一种是对于制冷量较大的机组,可设置一个专用吸收泵,将溶液送入吸收器泵入口,经泵混合后打入喷淋装置,再喷淋。

       液囊:设置在筒体下方,用来接收管簇上流下来的溶液并送往溶液泵。

       抽气装置:设置在吸收器的底部,用来抽出吸收器中的不凝气体。

       吸收器的主要作用是利用发生器产生并经溶液热交换器换热后的浓溶液吸收蒸发器而来的制冷剂蒸汽,使浓溶液与制冷剂蒸汽混合后变成稀溶液,溶解热和稀释热由管内流动的冷却水带走。从而使机组在运行过程中的蒸发温度和蒸发量稳定在正常工作状态。

溴化锂制冷原理

       双效三筒溴化锂制冷压缩机的工作原理如图5-24所示。机组工作时,吸收器中的稀溶液由发生泵分两路输送至高温热交换器和低温热交换器,经换热升温后,分别进入高压发生器和低压发生器。

       图5-24 双效三筒溴化锂制冷压缩机的工作原理

       1.冷媒水入口 2.冷媒水出口 3.蒸发器 4.冷凝水出口 5.蒸汽进口 6.高压发生器 7.冷凝器 8.冷剂水进口 9.冷却水出口 10.低压发生器 11.高温热交换器 12.低温热交换器 13.蒸发器 14.发生泵 15.吸收泵 16.冷却水进口

       进入高压发生器的稀溶液被工作蒸汽加热至溶液沸腾点时,产生高温制冷剂蒸汽,导入低压发生器,对低压发生器内的稀溶液进行加热,再经节流进入冷凝器,被冷却为冷媒水。高、低压发生器产生的冷媒水经冷凝器集水盘汇合后导入蒸发器中。

       加热高压发生器中稀溶液蒸汽的凝结水,经凝水回热器进入凝水管路。而高压发生器中的稀溶液因被加热蒸发成制冷剂蒸汽,使浓度升高成浓溶液,又经高温热交换器导入吸收器。低压发生器中稀溶液被加热放出制冷剂蒸汽后也成为浓溶液,再经低温热交换器进入吸收器中,两种溶液混合后成为中间浓度溶液,然后由吸收泵输送到喷淋系统,喷洒在吸收器管簇的外表面,吸收来自蒸发器的制冷剂蒸汽,再次变为稀溶液进入下一次循环。

       由于冷凝器管簇内循环流动着冷却水,当高、低压发生器所产生的制冷剂蒸汽凝结在管簇外表时,被冷却水吸取其热量。凝结后的冷媒水经节流装置喷淋在蒸发器管簇的外表面,在蒸发器内压力的影响下,部分冷媒水蒸发吸收冷媒水的热量,产生部分制冷效应。而尚未蒸发的大部分冷媒水,由蒸发泵喷淋在蒸发器管簇的外表面,吸收通过管簇内流径的冷媒水的热量,使冷媒水的温度降低,从而达到制冷的目的。

       溴化锂吸收式制冷压缩机组是以水为制冷剂,溴化锂作为吸收剂,采用热水或蒸汽为热源而实现制冷的,因此它特别适应有余热可利用的场所。

溴化锂吸收式制冷压缩机组中发生器的结构和工作过程是怎样的?

       溴化锂制冷原理是在一定温度下,溴化锂水溶液液面上的水蒸气饱和分压力小于纯水的饱和分压力;而且浓度越高,液面上的水蒸气饱和分压力越小,制冷。

       在相同的温度条件下,溴化锂水溶液浓度越大,其吸收水分的能力就越强。这也就是通常采用溴化锂作为吸收剂,水作为制冷剂的原因。溴化锂吸收式制冷机主要由发生器、冷凝器、蒸发器、吸收器、换热器、循环泵等几部分组成。

       在溴化锂吸收式制冷机运行过程中,当溴化锂水溶液在发生器内受到热媒水的加热后,溶液中的水不断汽化;随着水的不断汽化,发生器内的溴化锂水溶液浓度不断升高,进入吸收器;水蒸气进入冷凝器,被冷凝器内的冷却水降温后凝结,成为高压低温的液态水。

       当冷凝器内的水通过节流阀进入蒸发器时,急速膨胀而汽化,并在汽化过程中大量吸收蒸发器内冷媒水的热量,从而达到降温制冷的目的;在此过程中,低温水蒸气进入吸收器,被吸收器内的溴化锂水溶液吸收,溶液浓度逐步降低,再由循环泵送回发生器,完成整个循环。

扩展资料

       溴化锂吸收式制冷机有多种类型,如两级发生的溴化锂吸收式制冷机,它可有效地利用高压加热蒸汽;两级吸收的溴化锂吸收式制冷机,它可有效地利用低温位热能;直燃式溴化锂吸收式制冷机,可利用油或煤气的燃烧直接加热等。

       溴化锂吸收式制冷机还可与背压式汽轮机组成联合装置,利用汽轮机的排汽作为溴化锂吸收式制冷机的加热蒸汽,这样不但可提高水蒸汽的利用率,且同时可以满足几种要求,例如制冷和发电。根据这一想法已经设计出溴化锂吸收式制冷机与离心式氟利昂制冷机联合工作的制冷机组。

       它用背压式汽轮机直接驱动离心压缩机,并利用其排汽向溴化锂吸收式制冷机加热。这种机组可生产较大的冷量,也可在不同的蒸发温度下生产冷量。这种机组不但经济性好(汽耗率低),而且低负荷特性好,即在部分负荷时仍能保持较高的经济性。

       发生器的结构。溴化锂吸收制冷压缩机组中的发生器主要由传热管、溶液盘、进液管、液囊、溶晶管和析充板等构成。

       ①传热管。发生器中的传热管通常使用紫铜光管、铜镍合金光管、不锈钢光管以及各种强化传热管。为了避免传热管在高温下产生管子与筒体间膨胀不均而造成热应力,通常将传热管做成受热时容易弯曲或将管子做成U型。

       ②溶液盘。溶液盘由双层钢板焊接而成,为槽形结构,用于贮存溶液,并起到隔开上下两个不同压力空间的作用。

       ③液囊。在沉浸式发生器中设置有液囊。

       ④熔晶管。是一种用来熔化溶液中结晶物体的器件。其结构与连接方式如图5-17所示,连接于发生器与吸收器之间,正常情况下,浓溶液从溶晶管外边的液槽中流向溶液热交换器,当因某种原因而使热交换器中溶液产生结晶时,溶液热交换器的溶液通道堵塞,发生溶液槽中的液位上升而使溶液进入熔晶管,从熔晶管直接导入吸收器,使吸收器中的溶液温度上升,而使结晶熔解,起到疏通管道的作用。

       图5-17 熔晶管的结构与连接方式

       好了,今天关于“溴化锂空调机组的组成和工作原理”的话题就讲到这里了。希望大家能够通过我的讲解对“溴化锂空调机组的组成和工作原理”有更全面、深入的了解,并且能够在今后的学习中更好地运用所学知识。