您现在的位置是: 首页 > 维修服务 维修服务

空调温度控制系统设计毕业论文_空调温度控制系统设计毕业论文cc2530

ysladmin 2024-05-21 人已围观

简介空调温度控制系统设计毕业论文_空调温度控制系统设计毕业论文cc2530       现在,我将着重为大家解答有关空调温度控制系统设计毕业论文的问题,希望我的回答能够给大家带来一些启发。关于空

空调温度控制系统设计毕业论文_空调温度控制系统设计毕业论文cc2530

       现在,我将着重为大家解答有关空调温度控制系统设计毕业论文的问题,希望我的回答能够给大家带来一些启发。关于空调温度控制系统设计毕业论文的话题,我们开始讨论吧。

1.我需要一篇4000字左右的关于建筑设备和空调系统节能的论文

2.民用建筑暖通空调节能设计措施探讨?

3.蒸发冷却空调应用中存在问题及解决设想论文

4.求多点温度控制系统的开题报告

5.基于单片机的空调控制器的设计与实现

6.基于plc的中央空调的温度控制设计

空调温度控制系统设计毕业论文_空调温度控制系统设计毕业论文cc2530

我需要一篇4000字左右的关于建筑设备和空调系统节能的论文

       随着经济的迅速发展,能源和环境问题日益尖锐。在特别炎热的夏天,我们都切身地体会到了电力的紧张。可以预见,这种状况在今后还会出现,并且会日趋严重。一、暖通空调领域节能的重要性和可行性随着社会的发展,建筑能耗在总能耗中所占的比例越来越大,在发达国家已达到40%,据统计在湖南省也达到27.8%。在城市远高于这个比例。而在建筑能耗里,用于暖通空调的能耗又占建筑能耗的30%-50%,且在逐年上升。随着人均建筑面积的不断增大,暖通空调系统的广泛应用,用于暖通空调系统的能耗将进一步增大。这势必会使能源供求矛盾的进一步激化。另一方面,现有的暖通空调系统所使用的能源基本上是高品位的不可再生能源,其中电能占了绝对比例。对这些能源的大量使用,使得地球资源日益匮乏,同时也带来严重的环境问题,如在我国的一些地区酸雨、飘尘问题呈日益严重之势,对生态环境和可持续发展带来了很大影响。以湖南长沙地区为例,2003年夏季电力系统最大负荷大约为160万千瓦,据有关部门推算,其中空调系统的负荷就占了约60万千瓦。在最热的夏天,如果对暖通空调系统采取节能措施,不仅可以大大缓解电力紧张状况,同时对于降低不可再生能源的消耗、保护生态环境、维持可持续发展、振兴湖南经济等都有着重要的意义。根据暖通空调行业的研究成果,现有空调系统的能耗是惊人的,如果采用节能技术,现有空调系统节能20%-50%完全可能。显然,如果对长沙地区的空调系统和建筑系统采用节能措施,那么即使遇到今夏那样的炎热天气,长沙也不会超过现有电力系统峰值而停电了。

       二、暖通空调领域节能的途径与方法科学技术的不断进步,使暖通空调领域新的技术不断出现,我们可以通过多种方法实现暖通空调系统的节能。1、精心设计暖通空调系统,使其在高效经济的状况下运行暖通空调系统特别是中央空调系统是一个庞大复杂的系统,系统设计的优劣直接影响到系统的使用性能。例如系统往往都是按最大负荷设计的,而实际运行基本上是在部分负荷下运行,如果系统各部分的设计不能满足部分负荷运行的要求,那系统的能耗是很大的。又如新风系统的设计,系统应该能随着室外气象参数的变化改变新风量,以最大限度地缩短主机的开启时间。可以说空调系统的设计对系统的节能起着重要的作用。2、改善建筑维护结构的保温性能,减少冷热损失我们知道对于暖通空调系统而言,通过维护结构的空调负荷占有很大比例,而维护结构的保温性能决定维护结构综合传热系数的大小,亦即决定通过维护结构的空调负荷的大小。所以在国家出台的建筑节能设计规范和标准中,首先要求的就是提高维护结构的保温隔热性能。3、提高系统控制水平,调整室内热湿环境参数,尽可能降低空调系统能耗空调系统特别是舒适性空调系统对人体的作用是通过空气温度、湿度、风速、环境平均辐射温度进行的,人体对环境的冷热感觉是这些环境因素综合作用的结果。以往的空调控制方式仅仅是测控空气的温度湿度,甚至仅空气温度。显然是不全面的,势必带来许多问题,如空调系统对人体的作用不直接、当环境变化时对环境的调控不迅速、人体感到不舒适、空调系统的这种调控方式不节能。热湿环境研究成果的应用,为我们采用新的控制方式方法提供了理论基础。如果采用舒适性评价指标即体感指标作为空调系统的调控参数,如采用PMV或SET*指标对空调系统进行调控,不仅可以解决传统控制方法存在的弊病,而且可以实现大幅度的节能,据我们的初步研究表明,采用这种控制方法可使空调系统在人体舒适的条件下节能30%左右。4、采用新型节能舒适健康的空调方式如上所述,影响人体热舒适性的环境参数众多,不同的环境参数组合可以得到相同的热舒适性效果,但不同的热湿环境参数组合空调系统的能耗是不相同 的。例如在冬季,如果我们采用传统的空调方式,把整个室内的空气加热,通过空气实现人体与环境的热湿交换,就需要较高的空气温度,此时通过维护结构的热损失和加热新风的热损失都比较大。如果我们根据热湿环境的研究成果,改变传统的空调方式,增加辐射热(如低温地板辐射采暖),此时所需要的空气温度降显著下降,一般可达到12~14度,而传统方式一般在18~20度,显然后者比前者具有显著的节能效果。在夏季也有类似的结果。5、推广应用使用可再生能源或低品位能源的空调系统随着空调系统的广泛应用,空调对不可再生能源的消耗将大幅度上升,同时对生态环境的破坏也在日趋加剧。如何利用可再生能源及低品位能源已经成了该领域重要的研究课题。地源热泵空调系统就是在这种形势下发展起来的,它利源地下恒温层土壤热显著提高空调系统的COP值,使得同等制热(或制冷)量下的系统能耗大幅度下降。另外,利用太阳能供热或制冷技术也在开发研究着。6、开展冷热回收利用的研究运用工作,实现能源的最大限度利用目前许多空调系统冷热回收利用研究也在蓬勃开展,如空调系统排风的全热回收器,夏季利用冷凝热的卫生热水供应等,都是对系统冷热的回收利用,显著提高了空调系统能源利用率。三、存在的问题与对策要实现空调系统的节能降耗,已经具备了许多成熟的条件,但同时也存在许多问题有待于解决:1、暖通空调系统的设计管理问题如前所述,空调系统的设计对空调系统的节能性有着重要的影响。然而在实际中往往得不到一些设计部门和设计人员的足够重视,使得设计建造的系统不仅初投资大,运行能耗也相当惊人,大大超过了国家标准。据实测,有的公共建筑的空调能耗占建筑总能耗的60%。为此, 我们有必要建议政府有关职能部门加强对暖通空调设计项目的管理,可以委托相关技术部门如学会等对设计图纸文件进行严格审查,对未达到国家有关节能标准的设计严禁施工建造。2、暖通空调系统的运行管理问题除设计外,我们发现运行管理也起着重要的作用。有些单位的空调系统,一年四季只有开机关机和冬夏季转换操作,显然系统达不到相应的节能效果。为此 要求运行管理人员不仅要有强烈的责任心,上岗前还必须要进行系统的培训和考核,对没有达到要求的,应重新培训,考核合格后才能上岗。在调查中我们发现,同样一套系统,管理人员不同,系统的能耗大不相同,有的甚至相差50%以上。3、新型空调方式、控制方法及新的节能技术的开发应用问题如前所述,采用新型空调方式、新的控制方法,不仅能显著提高热舒适性而且可以使系统大幅度节能。在我省对新型空调方式和控制方法的研究可以说在全国都是比较早的,并且已经取得了一些可喜的成果,只要政府部门略加扶持这些成果将很快能得到适用,并形成产业化,对这些项目的实施,将对我省的能源、环境和经济都将起到巨大的推动作用。4、公众对空调系统作用的理解观念问题对于舒适性空调系统,从本专业的角度来讲就是使人体有好的热舒适性。而在社会上我们常常发现一种这样的观念:认为空调在夏季是越冷冬季越热效果越好。这显然与舒适性空调的出发点相违背的。事实上,这样不仅大大增大了空调系统的能耗,同时由于室内外温差的增大,也使人体对不同环境的适应性下降,身体免疫力降低。这些可以通过宣传改变人们的观念。5、使用可再生能源空调系统的开发推广应用问题利用可再生能源的暖通空调系统,如地源热泵空调系统、太阳能制冷、供热系统,不仅有着显著的环境和社会效益,有的还有着显著的经济效益(如地源热泵空调系统),应大力开发推广。当然,和其他任何新技术一样,这些技术也存在着一些问题(如地源热泵系统的地源热提取问题等),也需要进一步研究完善,也需要政府部门的重视和支持。综上所述,暖通空调系统在建筑节能中占据重要的位置,起着重要的作用,节能技术的研究开发和运用是暖通空调系统、建筑系统节能的基础,政府职能部门的重视和支持,则是实现大幅度节能、产生显著的环境和社会效益、推动经济发展的保证。

民用建筑暖通空调节能设计措施探讨?

       第一章 绪论 1. 1 选题背景 防潮、防霉、防腐、防爆是仓库日常工作的重要内容,是衡量仓库管理质量的重要指标。它直接影响到储备物资的使用寿命和工作可靠性。为保证日常工作的顺利进行,首要问题是加强仓库内温度与湿度的监测工作。但传统的方法是用与湿度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。因此我们需要一种造价低廉、使用方便且测量准确的温湿度测量仪。1.2 设计过程及工艺要求 一、基本功能~ 检测温度、湿度~ 显示温度、湿度~ 过限报警 二、主要技术参数 ~ 温度检测范围 : -30℃-+50℃~ 测量精度 : 0.5℃~ 湿度检测范围 : 10%-100%RH~ 检测精度 : 1%RH~ 显示方式 : 温度:四位显示 湿度:四位显示~ 报警方式 : 三极管驱动的蜂鸣音报警 第二章 方案的比较和论证 当将单片机用作测控系统时,系统总要有被测信号懂得输入通道,由计算机拾取必要的输入信息。对于测量系统而言,如何准确获得被测信号是其核心任务;而对测控系统来讲,对被控对象状态的测试和对控制条件的监察也是不可缺少的环节。传感器是实现测量与控制的首要环节,是测控系统的关键部件,如果没有传感器对原始被测信号进行准确可靠的捕捉和转换,一切准确的测量和控制都将无法实现。工业生产过程的自动化测量和控制,几乎主要依靠各种传感器来检测和控制生产过程中的各种参量,使设备和系统正常运行在最佳状态,从而保证生产的高效率和高质量。2. 1温度传感器的选择 方案一:采用热电阻温度传感器。热电阻是利用导体的电阻随温度变化的特性制成的测温元件。现应用较多的有铂、铜、镍等热电阻。其主要的特点为精度高、测量范围大、便于远距离测量。铂的物理、化学性能极稳定,耐氧化能力强,易提纯,复制性好,工业性好,电阻率较高,因此,铂电阻用于工业检测中高精密测温和温度标准。缺点是价格贵,温度系数小,受到磁场影响大,在还原介质中易被玷污变脆。按IEC标准测温范围-200~650℃,百度电阻比W(100)=1.3850时,R0为100Ω和10Ω,其允许的测量误差A级为±(0.15℃+0.002 |t|),B级为±(0.3℃+0.005 |t|)。铜电阻的温度系数比铂电阻大,价格低,也易于提纯和加工;但其电阻率小,在腐蚀性介质中使用稳定性差。在工业中用于-50~180℃测温。 方案二:采用AD590,它的测温范围在-55℃~+150℃之间,而且精度高。M档在测温范围内非线形误差为±0.3℃。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会损坏。使用可靠。它只需直流电源就能工作,而且,无需进行线性校正,所以使用也非常方便,借口也很简单。作为电流输出型传感器的一个特点是,和电压输出型相比,它有很强的抗外界干扰能力。AD590的测量信号可远传百余米。综合比较方案一与方案二,方案二更为适合于本设计系统对于温度传感器的选择。 2. 2 湿度传感器的选择 测量空气湿度的方式很多,其原理是根据某种物质从其周围的空气吸收水分后引起的物理或化学性质的变化,间接地获得该物质的吸水量及周围空气的湿度。电容式、电阻式和湿涨式湿敏原件分别是根据其高分子材料吸湿后的介电常数、电阻率和体积随之发生变化而进行湿度测量的。方案一:采用HOS-201湿敏传感器。HOS-201湿敏传感器为高湿度开关传感器,它的工作电压为交流1V以下,频率为50HZ~1KHZ,测量湿度范围为0~100%RH,工作温度范围为0~50℃,阻抗在75%RH(25℃)时为1MΩ。这种传感器原是用于开关的传感器,不能在宽频带范围内检测湿度,因此,主要用于判断规定值以上或以下的湿度电平。然而,这种传感器只限于一定范围内使用时具有良好的线性,可有效地利用其线性特性。方案二:采用HS1100/HS1101湿度传感器。HS1100/HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。不需校准的完全互换性,高可靠性和长期稳定性,快速响应时间,专利设计的固态聚合物结构,由顶端接触(HS1100)和侧面接触(HS1101)两种封装产品,适用于线性电压输出和频率输出两种电路,适宜于制造流水线上的自动插件和自动装配过程等。相对湿度在1%---100%RH范围内;电容量由16pF变到200pF,其误差不大于±2%RH;响应时间小于5S;温度系数为0.04 pF/℃。可见精度是较高的。综合比较方案一与方案二,方案一虽然满足精度及测量湿度范围的要求,但其只限于一定范围内使用时具有良好的线性,可有效地利用其线性特性。而且还不具备在本设计系统中对温度-30~50℃的要求,因此,我们选择方案二来作为本设计的湿度传感器。2. 3 信号采集通道的选择 在本设计系统中,温度输入信号为8路的模拟信号,这就需要多通道结构。方案一、采用多路并行模拟量输入通道。这种结构的模拟量通道特点为:(1) 可以根据各输入量测量的饿要求选择不同性能档次的器件。总体成本可以作得较低。(2) 硬件复杂,故障率高。(3) 软件简单,各通道可以独立编程。方案二、采用多路分时的模拟量输入通道。 这种结构的模拟量通道特点为:(1) 对ADC、S/H要求高。(2) 处理速度慢。(3) 硬件简单,成本低。(4) 软件比较复杂。综合比较方案一与方案二,方案二更为适合于本设计系统对于模拟量输入的要求,比较其框图,方案二更具备硬件简单的突出优点,所以选择方案二作为信号的输入通道。本文来源于: /#/?source=bdzd

求多点温度控制系统的开题报告

        蒸发冷却空调应用中存在问题及解决设想论文

        摘要:

       

        目前,集中式蒸发冷却式空调系统在我国西部地区得到了越来越广泛的应用, 但其缺点即风道大、使用灵活性差,而且不能实现多个房间分别进行调节控制。针对集中式系统的缺点本文提出采用有别于传统风机盘管加新风系统的半集中式蒸发冷却空调系统,并从理论上进行了可行性分析。

        关键词:

        蒸发冷却 半集中式 空调系统 环保 节能

        1. 蒸发冷却技术现状

        蒸发冷却过程是以水作为制冷剂的,由于不使用CFCs,因而对大气环境无污染,而且可直接采用全新风,极大地改善了室内空气品质。同通常的机械制冷的原理一样,由制冷剂的蒸发而提供冷量。但是对蒸发冷却来说,是利用水的蒸发取得能量,它不是将蒸发后的水蒸汽再进行压缩、冷凝回到液态水后再进行蒸发。一般可以直接补充水分来维持蒸发过程的进行。

        据有关文献对蒸发冷却空调在乌鲁木齐、西安、哈尔滨、北京的应用分析可知:其运行能耗约为常规空调设备的1/5(机械制冷系统装机功率50w/m2左右,蒸发冷却系统装机功率10 w/m2,节电80%);从初投资方面看,约为常规空调设备的1/2(机械制冷方式造价400元/ m2左右,蒸发冷却系统造价250元/ m2左右,节省投资30~50%),且具有加湿功能;从室内空气品质方面看,蒸发冷却系统由于按100%新风运行,因此明显优于常规空调系统,而且它以水为制冷剂,不使用CFCS,对大气环境无污染。

        该技术在八十年代中期传入我国,在我国西部干旱地区(尤其是新疆地区)得到研究和应用,因为我国西北地区昼夜温差大,空气干燥,夏季室外空调计算4湿球温度较低(一般低于22度);昼夜温差大,每日早晚与中午气温(干球温度)相差较大;冬季室外干球温度较低,多为干冷气候(若只对室内供热,室内空气相对湿度一般低于20%)。这些独特的气象条件为蒸发冷却技术提供了天然的应用场所,因为蒸发冷却是一种适宜在干燥地区使用的供冷技术,它利用水分蒸发吸热来降低送风温度,从而降低房间温度。正是由于西部的特殊气候条件使得蒸发冷却空调系统替代常规空调系统成为可能。目前蒸发冷却空调系统在新疆地区的宾馆、办公楼、餐饮、娱乐、体育馆、影剧院等公共与民用建筑以及一些工业建筑中已广泛应用,仅乌鲁木齐绿色使者中央空调有限责任公司在新疆地区完工的工程项目超过70余个[1]。

        2. 蒸发冷却空调存在的问题

        当前我国西部地区的许多高楼大厦、公共建筑内,仍广泛使用机械制冷空调系统。尽管这些系统提供了舒适的工作生活环境,但和蒸发冷却空调机组相比较其一次性投资巨大、运行费用昂贵、维修与养护复杂,而且会引发“病态建筑综合症”和造成环境污染。尤其是SARS疫情爆发后空调系统的安全性问题更加引起暖通界人士和卫生部的关注。室内空气品质越来越得到关注,而蒸发冷却系统由于按100%新风运行,不使用CFCS,对大气环境无污染,因此明显优于常规空调系统。目前在我国西部地区多采用集中式蒸发冷却系统, 其优点是使用时间长,便于维护,整个系统在需进行空气调节的场所仅有风道敷设而没有水路布置,故其设计简单成本低,因不需在吊顶中设置水管从而彻底消除了凝结水渗漏的问题。另外,该系统多采用全新风,大大改善室内空气品质,同时,在过渡季节采用全新风可节约能耗。

        集中式蒸发冷却系统也有一些缺陷:首先,应用单元式直接蒸发冷却空调机会导致室内湿度较高(通过对乌鲁木齐已完工系统现场测试,室内湿度约75%)。其次,由于是采用冷空气对室内进行冷却而空气的比热较小,所以该系统风量较大,结果导致系统风道比一般半集中式空调系统风道占用空间大,导致其使用灵活性差。第三点,考虑到成本问题,目前尚没有物美价廉的末端产品来实现多个房间分别控制调节。但从设计和经济的角度考虑对温湿度控制精度要求不高的舒适性空调仍具有可行性,尤其对大型娱乐场所、餐饮、商场、体育场馆、会议中心、各种活动中心等公共场所具有很大优势。这也是集中式蒸发冷却空调系统在新疆地区近年来应用广泛的一个重要原因[2]。

        3. 半集中式蒸发冷却空调系统的提出

        由于集中式系统的缺点即风道大、使用灵活性差,而且不能实现多个房间分别进行调节控制。因此在某些场合限制了集中式空调系统的应用。因为传统的半集中式空调系统该系统能单独调节各个房间温度,适合风管不易布置和层高较低的场所,如宾馆客房和写字间等。故针对集中式系统的缺点本文提出了有别于传统风机盘管加新风系统的半集中式蒸发冷却空调系统,并从理论上进行了可行性分析。

3.1 半集中式蒸发冷却式空调系统

        此系统和传统的风机盘管加新风系统略有不同,传统风机盘管加新风系统所用冷媒是冷水机组提供的冷水,故冷水机组是核心。而半集中式蒸发冷却系统的.核心是蒸发冷却段,是利用水的蒸发取得能量,它不是将蒸发后的水蒸汽再进行压缩、冷凝回到液态水后再进行蒸发,而是直接补充水分来维持蒸发过程的进行,系统中新风由蒸发冷却新风机组处理,根据室外设计参数和负荷特点可选用单级或多级蒸发冷却。具体图示见图3-1。

        传统半集中系统 蒸发冷却半集中系统

        图3-1 传统系统与蒸发冷却系统的比较

        直接蒸发冷却处理过程中,新风被等焓加湿,循环水温近似等于进口空气湿球温度。例如在乌鲁木齐夏季室外空调计算湿球温度约18℃,当空气被直接蒸发冷却处理后,理论上循环水温亦能达到18℃。若使用间接-直接蒸发冷却过程,则新风首先经等湿冷却,然后等焓加湿,这样处理后循环水温可进一步降低达到13~16℃,虽然经上述两种方式处理后的水温均高于冷水机组的冷冻水温7~12℃,但只要加大水量,通入冷却盘管后仍然可以承担部分负荷。故半集中式蒸发冷却系统与传统系统的主要区别是它的所有负荷均由蒸发冷却过程承担,而不需要冷水机组和冷却水系统,其初投入大大降低,一次投资综合造价仅为传统制冷空调方式的40%~80%。

3.2 可行性分析

        为了探讨半集中式蒸发冷却空调系统在西北地区使用的可行性,以乌鲁木齐气候为例,进行设计方案的探讨和比较。乌鲁木齐室内外状态点及参数见图3-2。

        图3-2 室内外状态点

        地点:乌鲁木齐夏季

        季节:夏季

        tgw:室外干球温度 34.1℃

        tsw:室外湿球温度 18℃

        tgn:室内设计温度 27℃

        相对湿度 60%

        大气压力 906.7 mbar

        3.2.1 传统风机盘管+新风系统

        从图3-2中可看出,夏季室外空气的含湿量dw小于室内空气的含湿量dn,即室外空气需要加湿处理,为实现这一目的,在传统的风机盘管加新风系统中一般是在送风机前安装蒸汽加湿系统对被处理空气进行等温加湿。见图3-3。

        空气处理过程(W 室外空气状态点,N室内空气状态点,KL新风机温升)

        图3-3 传统风机盘管加新风系统空气状态变化图

        3.2.2 半集中式蒸发冷却系统[风机盘管+直接蒸发冷却新风机组] [3]

        风机盘管+直接蒸发冷却新风机组的半集中式系统,则其空气变化过程如图3-4所示。

        图3-4 风机盘管+直接蒸发冷却新风机组

        直接蒸发冷却新风机组,直接蒸发冷却效率ηDEC最高可达90%,按ηDEC=90%计算:

        (3-1)

        注:tws 室外空气湿球温度

        使用循环水处理的直接蒸发冷却是一等焓加湿过程,因此可确定L点的状态。循环水温最终被固定在机器露点L接近室外湿球温度。由式(3-1)可知:

        tsh=tL=tw-(tw-tws)×90%

        =34.1-(34.1-18)×90%=19.6℃

        注:tsh 直接蒸发冷却循环水水温

        将循环水通入风机盘管,由于循环水水温略高于室内空气露点温度18.4℃,所以只能对室内回风进行等湿冷却。

        3.2.3 半集中式蒸发冷却系统[风机盘管+(间接+直接)蒸发冷却新风机组]

        风机盘管+(间接+直接)蒸发冷却新风机组的半集中式系统,空气变化过程见图3-5。

        图3-5 风机盘管+(间接+直接)蒸发冷却新风机组

        间接+直接蒸发冷却新风机组。绿色使者中央空调有限公司生产的板翅式间接蒸发冷却器其效率ηIEC最高可达60~75%,如果按ηIEC=60%计算:

        (3-2)

        注:tws 室外空气湿球温度

        间接蒸发冷却是一等湿降温过程,根据式(3-2)可确定P点的状态。

        tP=tw-(tw-tws)×60%

        =34.1-(34.1-18)×60%

        =24.4℃

        由tp=24.4℃可知其湿球温度tps=14.8℃并且直接蒸发冷却入口温度就是24.4℃。再根据式(3-1) 得: tsh=tL=tp-(tp-tps)×90%

        =24.4-(24.4-14.8)×90%

        =15.76℃

        注:tsh 直接蒸发冷却循环水水温

        将循环水通入风机盘管,由于循环水水温低于室内空气露点温度18.4℃,所以可对室内回风进行除湿冷却。

        3.2.4 半集中式蒸发冷却系统[风机盘管+(间接1+间接2+直接)蒸发冷却新风机组]

        风机盘管+(间接1+间接2+直接)蒸发冷却新风机组,空气变化过程如图3-6所示。

        图3-6 间接1+间接2+直接蒸发冷却半集中式系统

        采用带有表冷却段(冷却塔供冷的第一级间接蒸发冷却段)的三级蒸发冷却新风机组,其表冷段利用冷却塔的冷却水对新风进行冷却。这种将冷却水通入表冷器的冷却塔供冷方式同间接蒸发冷却一样实现了对空气的等湿降温处理。因此,这种带有冷却塔供冷的间接+直接蒸发冷却机组又被称为三级蒸发冷却机组(两级间接蒸发冷却+直接蒸发冷却)。如利用冷却塔的冷却水,冷却效率可达η冷却塔= 40~50%左右,空气终状态温度≈空气初状态湿球温度w+6~8℃. 按η冷却塔=50%计算有:

        (3-3)

        首先根据式(3-3)可确定P点的状态。

        tP=tw-(tw-tws)×50%

        =34.1-(34.1-18)×50%

        =26℃

        则间接蒸发冷却的入口干球温度就是26℃,根据焓湿图可知此时湿球温度tps为15.3℃。根据式(3-2)可确定Q点的状态

        tQ=tp-(tP-tPs)×60%

        =26-(26-15.3)×60%

        =19.6℃

        则直接蒸发冷却的入口干球温度就是19.6℃,根据焓湿图可知此时湿球温度tQS为13.5℃。再根据式(3-1)可确定L点的状态

        tL=tQ-(tQ-tQS)×90%

        =19.6-(19.6-13.5)×90%

        =14.1℃

        将循环水通入风机盘管,由于循环水水温低于室内空气露点温度18.4℃,所以可对室内回风进行除湿冷却。

        4. 结束语

        半集中式蒸发冷却系统用水作为制冷剂, 无冷水机组, 其中直接系统和(间接+直接)系统均无冷却水系统, 故它们的初投资均比传统半集中式系统低, 而且运行费用少。

        由于半集中式蒸发冷却系统的供水温度较高,故供水量较大。其中直接蒸发冷却段的冷却水量的多少将直接影响到机组的制冷量,而负荷需要的冷却水量较大时又需要考虑补水和补水量等等,这些都需要进一步的探讨。

        参考文献

        1. 翔,武俊梅等,中国西北地区蒸发冷却技术应用状况的研究,第11届全国暖通空调技术信息网大会论文集 419~423

        2. 刘鸣,蒸发冷却空调技术的工程应用问题,西北五省暖通空调制冷热能动力2002联合学术年会 84~87

        3. 陈沛霖,蒸发冷却在空调中的应用,西安制冷,1999,1:1~7

;

基于单片机的空调控制器的设计与实现

        资料包括: 论文( 17页6130字) 图纸

        原文:

        摘要

        本文介绍了以AT89S51单片机为核心的温度控制系统的工作原理和设计方法。

        温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。

       

        文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路、PC机与单片机串口通讯电路和一些接口电路 。

        单片机通过对信号进行相应处理,从而实现温度控制的目的。

        文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、继电器控制程序、单片机与PC机串口通讯程序。

        关键字:单片机 DS18B20温度芯片 温度控制 串口通讯

        一、 方案设计与论证

        1、 测量部分

        方案一:

        采用热敏电阻,可满足40摄氏度至90摄氏度测量范围,但热敏电阻精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的。

        而且使用热敏电阻,需要用到十分复杂的算法,一定程度上增加了软件实现的难度。

        方案二:

        采用温度芯片DS18B20测量温度。

        该芯片的物理化学性很稳定,它能用做工业测温元件,且此元件线形较好。

        在0—100摄氏度时,最大线形偏差小于1摄氏度。

        该芯片直接向单片机传输数字信号,便于单片机处理及控制。

        本制作的最大特点之一就是直接采用温度芯片对温度进行测量,使数据传输和处理简单化。

        采用温度芯片DS18B20测量温度,体现了作品芯片化这个趋势。

        部分功能电路的集成,使总体电路更简洁,搭建电路和焊接电路时更快。

        而且,集成块的使用,有效地避免外界的干扰,提高测量电路的精确度。

        所以芯片的使用将成为电路发展的一种趋势。

        本方案应用这一温度芯片,也是顺应这一趋势。

        2、 主控制部分

        方案一:

        此方案采用AT89C51八位单片机实现。

        单片机软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制。

        但是,AT89C51单片机需要用仿真器来实现软硬件的合成在线调试,较为繁琐,很不简便。

        而且AT89C51的地位已经渐渐

        的被AT89S51所取代。

        逐渐成为历史。

        事实也证明了AT89S51在工业控制上有着广泛的应用。

        方案二:

        此方案采用AT89S51八位单片机实现。

        它除了89C51所具有的优点外,还具有可在线编程,可在线仿真的功能,这让调试变得方便。

        当与凌阳十六位单片机相比时,AT89S51八位单片机的价格便宜,再编程方便。

        而且AT89S51在工业控制中有广泛的应用,编程技术及外围功能电路的配合使用都很成熟。

        这对于在网上查找相关资料和在图书馆查找相关资料时非常方便的。

        觉得可行的找我 我可以给你更详细的

基于plc的中央空调的温度控制设计

       一、 目的

       单片机综合练习是一项综合性的专业实践活动,目的是让学生将所学的基础理论和专业知识运用到具体的工程实践中,以培养学生综合运用知识能力、实际动手能力和工程实践能力,为此后的毕业设计打下良好的基础。

       二、 任务

       本次单片机综合练习的任务是设计并制作一个空调控制器。

       基本任务是利用AT89C51单片机、ADC0809模数转换器等芯片设计并制作一个具有制冷、制热、通风和自动运行的手控型空调控制器。

       三、硬件部分的具体内容和要求

        1.手控型空调控制器的功能:

       1)空调控制器应具有制冷、制热、通风和自动运行四种工作模式。

       a. 制冷:室内风机、压缩机及室外风机工作,而四通换向阀停止工作。

       b. 制热:室内风机、压缩机、室外风机和四通换向阀均工作。

       c. 通风:室内风机工作,而压缩机、室外风机和四通换向阀均不工作。

       d. 自动运行:能根据当前室内温度和自动运行的设定温度,自动选择制冷、制热或通风工作模式。

       e. 每按一下工作模式选择键时,工作模式按图3所示的箭头方向依此变换:

       图3 工作模式选择

        2).能对温度进行设定和控制:

       a. 制冷时温度调节范围为:20℃~32℃。当室内温度高于设定温度1℃时,开始制冷;而当室内温度降到设定温度时,则转为通风状态。

       b. 制热时温度调节范围为:14℃~30℃。当室内温度低于设定温度1℃时,开始制热;而当室内温度升到设定温度时,则转为通风状态。

       c. 通风时温度设置栏显示" 一 一 ",并且温度设置键无效。

       d. 自动运行温度调节范围为:25℃、27℃、29℃。若室内温度低于设定温度5℃时,自动按制热工作模式运行;若室内温度高于设定温度时,则按制冷模式运行;否则按通风模式运行。

       e. 温度设定键每按一下,则温度上升或下降1℃(在设定范围内)。

       f. 控温精度为±1℃

        3).室内风机具有高、中、低三档风速和自动风控制功能。

       每按一下风速选择键时,风速模式按图4所示的箭头方向依此变换:

       图4 风速模式选择

       其中自动风与工作模式及温度有关:

       a. 制冷时,当室内温度高于设定温度5℃时,为高速风;

        当室内温度高于设定温度2℃~5℃时,为中速风;

        当室内温度不高于设定温度2℃时,为低速风;

       b. 制热时,当室内温度低于设定温度5℃时,为高速风;

        当室内温度低于设定温度2℃~5℃时,为中速风;

        当室内温度不低于设定温度2℃时,为低速风;

       c. 通风时,当室内温度高于25℃时,为高速风;

        当室内温度介于20℃~25℃时,为中速风;

        当室内温度低于设定温度20℃时,为低速风;

        4).具有压缩机三分钟自动保护功能。由于家用空调器所使用的压缩机大多为电容启动运行电动机,带载启动能力较差,因此无论在制冷运行还是在制热运行时,当压缩机停止工作后,必须在三分钟后才允许重新启动。

        2.电路设计、制作的功能和要求:

        1)用6只共阴极的八段数码管来分别显示工作模式、风速状态、设定温度和室内温度。为了统一起见,对6只八段数码管的具体排列和工作状态的显示符号作如下规定:

       室内温度

        设定温度

        风速状态:低速档用" "表示

        中速档用" "表示

        高速档用" "表示

        自动档用" "表示

        工作模式:制冷模式用"L"表示

        制热模式用"H"表示

        通风模式用"F"表示

        自动模式用" "表示

        2)用5只按钮来分别作为启动/关闭键、工作模式键、风速选择键、温度设定上升键和下降键。(此外还有1只系统复位按钮,共6只)

        3)上电后,自动显示自动工作模式、自动风速档、设定温度27℃和实际室内温度,这时用户可以对工作模式、风速档、设定温度进行设定,但只有在按下启动/关闭键后,空调器才正式开始运行;在空调器运行期间,若

        对上述状态进行设定,则空调器马上开始执行。若关机后(非断电)重新启动空调器,则空调器自动进入上次关机前的设定状态。

        4)用6只LED发光二极管来分别表示室内风速的高、中、低三档,压缩机、室外风机和四通换向阀,所有发光二极管均要求用2003达林顿管或三极管放大驱动。

        5)温度传感器采用AT502热敏电阻。

       3.空调控制器硬件电路图

       4.硬件设计思想

       1)根据任务书可知,该系统需要人机界面(按键输入7段码LED显示),AD采样,以及单片机控制部分等模块,并且可以得到以下硬件系统框图

       2)各部分硬件的设计

       a.温度传感器选择

        根据任务要求我们选择了AT502作为温度传感器,根据电阻分压(如下图左),实现由温度到电压值的转换,因为AT502的温度系数比较大,经计算当温度变化范围是0-99度时,IN0口的电压范围是0.64-3.6伏,所以就可以不用运放,直接送到AD采样的输入端进行AD采样。

        b.AD芯片的选择

        因为温度变化范围是0-99度,理论上AD位数只要7位(128级)就够了,所以系统采用了经典的ADC0809(8位AD)作为AD采样芯片。

        温度的计算公式:V=5*Rt/(R+R1+Rt)

        c.按键输入:

        因为按键数目不多,所以系统直接采用非编码方式,直接连接单片机I/O口。

       d.显示部分:

       系统采用74HC573和ULN2003作为驱动,P0和P2作为输出口,控制动态显示的LED显示器。

       e.输出控制

       任务要求用6只LED发光二极管来分别表示室内风速的高、中、低三档,压缩机、室外风机和四通换向阀,51单片机的低电平驱动能力较强,LED可以直接连接单片机的I/O口。

空调节能技术论文

       中央空调系统的组成

       中央空调系统主要由冷热源、冷冻水系统、冷却水系统、冷却塔和空调末端等组成。与一般中央空调系统不同的地方是该系统的冷源是靠水冷机组提供的,热源是使用市政蒸汽通过热板换进行热量交换增加循环水水温来实现的。采用两台130KW的压缩式冷水机组提供冷源,用于制冷;采用两套热板换进行热交换增加循环水水温,用于制热。这种冷热源的配置方式达到了较好的节能效果。空调末端采用的是新风空调机组和风机盘管两种类型,新风机组主要用于保证室内新鲜空气的质量,控制送风温湿度;风机盘管通过热交换为室内提供冷量和热量。

       1.2控制系统的组成

       目前,中央空调的控制方法主要有:继电器控制、可编程逻辑控制(PLC控制)、直接数字控制器(DDC控制),更先进的则是采用建筑设备自动化系统(BAS)对中央空调等建筑设备进行监控和系统集成。继电器控制系统由于故障率高、系统复杂、功耗高等缺点已逐渐被淘汰。传统的中央空调控制方法是采用DDC控制方式,将各个温度、湿度检测点和控制点连接到多台DDC上,进行多点监控。但是由于现代智能建筑楼层较多,多组中央空调设备位于不同楼层,温湿度检测点分布于各个房间,采用DDC方式进行控制有着线路复杂、施工不便、资源浪费、系统的实时性和可靠性不高等缺点。PLC控制集成度低于DDC,可以自由编写,价格低,且运行可靠,抗干扰能力强,使用与维护均很方便,这些优点使其得到广泛的应用。

       中央空调系统的现场设备有一台西门子的S7-200CPU226PLC作为主控制器;两个EM223数字量输入输出模块,分别为32DI/32DO和8DI/8DO;一个EM2318AI模拟量输入模块;一个EM2324AQ模拟量输出模块;一个EM321RTD热电阻输入模块,提供两路模拟量输入;一个MP277触摸屏最为上位机。上位机负责对整个系统的运行情况进行监测和控制,对各参数进行实时记录,并保存入实时数据库,系统的结构如图1所示:

       图1中央空调系统结构图

       2系统应用及功能

       2.1冷水机组的应用及功能

       冷水机组为整个系统提供冷源。冷冻水循环系统通过冷水机组后,将循环水水温降低。然后通过冷冻水泵、集水器供给空调末端。由于冷水机组的发展已经趋于成熟,本文不介绍其内部工作原理。为了满足不同冷量的需求,在冷水机组较为成熟的基础上,对冷水机组的投入数量以及冷量进行精确群控,以达到控制房间温度恒定,且处于功耗平衡的目的。相对于单冷水机组的中央空调系统,群控拥有更多的冷量冗余和更节能的运行策略,可以满足建筑群的不同时段对冷量的不同需求。

       2.2控制系统的选型特点与功能

       控制系统由S7-200系列PLC及HMI设备组成。在选型方面,由于西门子PLC的稳定性较强,而对于中央空调群控来说,无需大量冗余。所以可以选择西门子S7-200系列PLC来担当控制部分。由西门子EM231模块对现场温度和流量进行采集,以便于运算出当前系统冷量是否充足。通过调节冷冻水泵的转速来调节冷量的输送能力。由于中央空调的冷水机组可以通过出水水温和回水水温自动调节自身工作负荷。所以此类控制由冷水机组自行处理,不在群控PLC中予以干涉。

        随着改革开放逐步深化、国民经济的快速发展、人民对生活品质要求的提高,空调在现代建设中被广泛的应用。下面是我为大家精心推荐的空调节能技术论文,希望能够对您有所帮助。

空调节能技术论文篇一

        空调节能技术浅谈

        摘要:随着近年来社会经济的不断发展,人们生活品质的逐步提高,对于物质生活和环境舒适性的需求也更加苛刻,空调系统显然已经成为现代建筑行业中一个不可忽视的部分。但是,近年来能源危机突出和环境破坏对人类的影响逐步加深,已经让人类清晰的认识环境保护和能源节约的重要,国家也制定了一系列的法律法规和行业标准。因此,能源的有效节约、提高能源有效利用的方法和技术的研究成为了当今一项重要课题。本研究从影响空调系统的能耗的关键因素出发,提出了几项空调节能的可行性方案,最后探讨了空调节能的未来发展趋势。

        关键词:空调系统;节能技术;措施建议

        中图分类号:TU831.3+5文献标识码: A

        前言:

        随着人们经济水平的不断提高,生活品质的提升,无论是生活环境还是工作环境,空调系统在现代建筑中的应用也越来越广泛。根据统计表明,在我国空调耗能占建筑物总能源消耗的60%~70%,因此,采取有效的节能措施,解决高层建筑节能问题符合我国经济的可持续发展的要求,对节能减排和建设环境友好型社会有着至关重要的意义。

        空调能耗的现状以及节能的重要性

        随着改革开放逐步深化、国民经济的快速发展、人民对生活品质要求的提高,空调在现代建设中被广泛的应用。而在建筑能耗里,空调能耗已经占到建筑能耗的60%~70%左右,而且比重还在逐年上升。因此空调节能技术的发展对提高能源利用率、环境可持续发展有重要影响。

        在我国现阶段中央空调系统的应用中,通常认为空调系统的温湿度控制以及空气品质的控制是最为重要的,进而忽略了空调系统的能源消耗情况。在我国,影响中央空调系统能源不能得到有效利用的主要因素有三方面,首先,在设计过程中重视投资成本,而忽略了能耗指标计算,在整个系统方案中,缺乏节能引导中央空调系统的经济性分析。导致在工程建筑方案的运行过程中,使用投资低、耗能大、运行费用高的空调系统。其次,对于中央空调而言,整个的系统工程相对复杂,所以对于中央空调能源有效利用的评价,要从整个系统全面来看,而不能单纯地停留在对机器设备本身的评价上,真正意义上的节能是与各个系统设计理念、施工优劣情况以及运行管理水平和建筑物热特性等因素息息相关,而不是只看重设备本身。最后,还有一个主要的因素,就是缺乏高素质运行管理人员和节能监控,致使空调系统在运行和管理的过程中没有得到很好地控制和监管,合格的管理人才可以大大改善运行不合理的地方,有利于节能。

        建筑节能技术

        空调系统的节能技术首先可以从建筑物本身入手,结合建筑、结构等相关知识,使建筑物在形状、色彩、方位及材料等方面为空调节能创造最基础的条件。对于空调位置的安排要进行合理布局,合理设计相关比例与系数,选择保温隔热性能良好的材料作为墙体和屋面,并提高改善建筑围护结构的性能等,都是建筑节能的可行性措施。

        2.1选择合理的室内设计参数

        在整个建筑物中,主要的热损失来自于围护结构和门窗缝隙空气渗透。因此, 在建筑物进行建筑节能中,注重室内设计中加强围护结构,使用环保、节能型建筑材料, 可有效地减少通过围护结构的传热这一主要的空调负荷, 从而各主要设备的容量达到显著的节能效果。通过这种方法进行保温隔热,同时加强门窗的气密性。另外,在夏季空调供冷时,室内外侧玻璃受阳光照射,是空调冷负荷的主要部分,应采取必要的遮阳措施。而在冬季空调供热时,则要求改善窗户的保温效果,可以采用光热性能好的玻璃;为了减少窗的冷(热)桥传热,可以采用钢塑窗代替铝合金窗;同时还可以采用双层玻璃窗提高窗的保温性。在窗户的设计位置上要减小窗洞口与墙的面积比值减少空调房间两侧温差大的外墙面积及其薄弱环节窗的面积,利于空调建筑节能。

        2.2合理设计建筑结构

        合理的设计建筑结构也是进行空调节能的一个有效途径之一。可以通过改善建筑的保温隔热性能,使房间内冷热量的损失通过房间的墙壁和门窗传递出去,这样可以有效地减少建筑物的冷热负荷。建筑物的朝向对空调冷负荷有很大的影响,根据我国的地理位置来分析确定良好的建筑朝向,一般建筑物为南朝向是我国建筑节能的必要条件,可以通过保持合理的建筑间距以及建筑群的错落布局,使建筑物接受适当的太阳辐射,同时有利于获得自然通风气流。

        空调设计方面节能

        在面积较大的空调房内,在空调房内区的负荷与周边区的相比较差距较大,如果两个区域选择使用一个空调系统进行制冷,两个空调房区域的房间的将会产生较大的温差,尤其是在冬季及过渡季节,所以同时处于两个不同区域的工作人员对环境空间的温度反映冷热温差较大,,根据我国在2001年版的《采暖通风与空气调节设计规范》新增5.3.2条之规定,建筑物内负荷特性相差较大的内区与周边区,以及同一时间内必须分别进行加热与冷却的房间,宜分别设置空气调节系统.。内区系统主要处理室内负荷,与外区负荷相比,内区负荷则相对稳定,内区往往需要全年供冷,去除室内余热。外区系统主要处理外部得热,外区负荷波动大,外区新风来源一般是内区空调系统,与外区回风混合经风机盘管处理后达到送风点,外区冬季供暖,夏季供冷,从而满足舒适性要求。

        空调系统中的节能技术

        空调系统如何适应在低负荷下高效节能运行及在系统设计中对设备进行节能选配就成为空调节能的关键。

        4. 1 加强中央空调的运行管理和控制设备的调节控制

        提高空调能源的有效利用,需提高操控人员的职业素质,避免由于管理不善而引起的空调耗能。操控人员要做好设备运行记录,分析机组各种压力表、温度计、流量计的读数是否正常准确,并根据空调负荷的变化调节机组,确保机组运行在节能状态,而且定期保养检查,及时更换磨损的零件。

        4. 2 设备及管道的保温及水质处理

        要实现降低能量的过多耗费这一目标,就要做好设备及管道的保温。保温的目的是为了阻绝内外温度传递,如果室外的温度小于空调排水的温度加保温是为了防止空调水管结冰冻裂水管,如果环境温度大于空调排水温度加保温是为了防止有冷凝水造成漏水。空调设备和管道的保温,对于节省能量消耗、降低运行费用也是相当重要的。空调能耗高还有一个重要的原因,就是空调系统中水管中水质的污染。

        5、建筑空调系统设备的节能运行技术

        设备的节能运行技术在建筑空调系统综合节能技术中, 其也至关重要。主要技术包括: 蓄能空调技术、热回收技术、变频技术等。

        5.1蓄能空调技术

        蓄能系统就是储蓄在不需要的冷/热量或需要的冷/热量减少的时间的过程中,制冷/热设备将蓄冷/热介质中所移出的热量,并在空调处于用冷/热或工艺性的用能高峰时,启动此能量。这样既减少了能源的流失,又可以有效地利用能源,既有经济效益又有社会效益, 是一项双赢的节能举措。

        5.2 热回收技术

        热回收技术包括排风余热回收和制冷机组的冷凝热回收。排风余热回收充分利用排风的能量, 对其进行回收,从而对新风进行预冷或预热,减小新风负荷是暖通空调节能的重要途径。制冷机组的冷凝热回收系统既可以避免冷凝热排放到大气中造成热污染, 又可以节省为提供热水而设的锅炉及其附属设备, 避免了由于燃料的燃烧向大气排放的有害物, 应该说是一种效果明显, 又有环保作用的节能技术。

        5.3变频技术

        随着电力电子技术和计算机控制技术的不断发展,在空调控制系统中变频器也得到了广泛的应用,它的应用主要是针对空调控制系统的特点而进行控制。不同类型的冷水机组都有较完善的自动控制调节装置, 能随负荷变化自动调节运行状况, 保持高效率运行,从而实现了一种既能达到控制要求又能节约能源的方法。

        5.4太阳能空调技术

        太阳能是绿色能源中最重要的能源, 太阳能的热利用是目前建筑中利用太阳能的主要利用形式。它包括被动式和主动式两种形式。被动式太阳能房的结构相对简单、造价低、不需要任何辅助能源, 通过建筑方位合理布置和建筑构件的恰当处理, 以自然热交换方式来利用太阳能。主动式太阳房结构较为复杂,造价较高,需要用电作为辅助能源。采暖降温系统由太阳集热器、风机、泵、散热器及储热器等组成。在建筑外围护结构中还可采用太阳能集热墙, 利用太阳能采暖。

        6、结束语

        能源问题是我国实现经济发展的重点问题之一,建筑空调节能技术是节约能源、改善环境、促进经济可持续发展的有效措施。空调系统在高负荷下高效节能运行以及在系统设计中选配节能设备是建筑空调节能的关键因素, 这对于节约能源、降低运行费用、促进国民经济发展具有十分重要的意义。在未来的建筑物中,在空调系统设计方面,要在节约能源以及有效利用能源这两方面引起高度重视。只要各方共同努力,空调系统的节能降耗问题的解决指日可待。

        参考文献:

        [1] 农孙仁. 中央空调系统节能改造探析[J]. 企业科技与发展. 2012(18)

        [2] 叶宁. 中央空调系统的节能运行[J]. 科技资讯. 2012(03)

        [3] 李令言. 中央空调节能控制系统的研究与开发[D]. 中国科学技术大学 2011

        点击下页还有更多>>>空调节能技术论文

       今天关于“空调温度控制系统设计毕业论文”的讨论就到这里了。希望通过今天的讲解,您能对这个主题有更深入的理解。如果您有任何问题或需要进一步的信息,请随时告诉我。我将竭诚为您服务。